THALLIUM ; ANNUAL SURVEY COVERING THE YEAR 1977

Hideo KUROSAWA

Department of Petroleum Chemistry, Osaka University, Suita, Osaka, Japan

This survey will deal with 1) synthesis, structure and spectroscopy of organothallium(III) compounds, 2) thallium-metal bonded compounds, 3) reactions and kinetics, 4) organic synthesis with thallium(III) and thallium(I) compounds and 5) organothallium(I) compounds.

1. Synthesis, Structure and Spectroscopy of Organothallium(III) Compounds

A six-membered heterocycle containing a formal tetraalkylthallate moiety, <u>I</u> was prepared from Me_3TI and a conjugated double ylide (1). ¹H and ³¹P NMR data of <u>I</u> are described. Some pentahalophenylthallate anions have been

$$Me_{3}T1 + Me_{3}P=N-PMe_{2}=CH_{2} \xrightarrow{Me_{2}P \xrightarrow{P}} H_{2}C \xrightarrow{P} H_{2}C \xrightarrow{P}$$

isolated as the ammonium salts (2). Treatment of $[T1(C_{4}F_{5})_{4}][^{n}Bu_{4}N]$ with

$$(C_{6}F_{5})_{2}^{T1Br} \xrightarrow{2LiC_{6}C_{5}, [^{n}Bu_{4}N]Br} [T1(C_{6}F_{5})_{4}][^{n}Bu_{4}N]}_{[T1(C_{6}F_{5})_{2}(C_{6}C_{5})_{2}][^{n}Bu_{4}N]}$$

TIC1₃ gave [{T1(C_6F_5)₂C1}₂C1][ⁿBu₄N] and [T1(C_6F_5)₃C1][ⁿBu₄N]. Bis(pentachlorophenyl)thallium derivatives, (C_6C1_5)₂T1X (X= C1, OAc, C10₄, 1/2 S0₄, Br, I, CN) have been prepared from C_6C1_5 Li and T1C1₃ and subsequent metathetical procedures (3). The cis-1,2-dicyanoethylenedithiolate complex of the dimethylthallium ion, [Me₂T1{S₂C₂(CN)₂}][Ph₄As], was prepared, and a preliminary IR and ¹H NMR study of this complex was reported (4). Dimethylthallium sily1amide, Me₂T1N(SiMe₃)₂ was prepared from Me₂T1C1 and NaN(SiMe₃)₂ in toluene (5).

*Thallium: Annual Survey covering the year 1976 see J. Organometai. Chem., Vol. 147(1978)p.193-204.

The ¹H NMR spectrum in concentrated solution showed fast thallium-methyl exchange. The preparation and mass spectrum of $T1[N(SiMe_3)_2]_3$ also were described. This compound reacted with HN₃ and cyclopentadiene to give H₃[T1(N₃)₆] and C₅H₅T1, respectively. Dialkylthallium phosphides and arsenides, R₂T1EPhR' (R= Me, Et; R'= Ph, H; E= P, As) were prepared from HEPhR' and R₅T1 or R₂T1NMe₂ (6). They were characterized by mass and ¹H and ³¹P NMR spectra. Reactions of these compounds with heterocumulenes, oxygen or sulfur gave insertion products.

$$Me_{2}T1PPh_{2} + PhN=C=X \longrightarrow PhN=C \xrightarrow{X-TIMe_{2}} Pph_{2} \quad (X=0, S)$$

$$Me_{2}T1EPh_{2} + O_{2} \text{ (or 1/4 } S_{8}) \longrightarrow Me_{2}T1X-EPh_{2} \quad (X=0, S; E=P, As)$$

Preparation of $RT1X_2$ and R_2T1X (R= Ph, <u>p-MeC_6H_4</u>, <u>p-C1C_6H_4</u>; X= OAc, OOCPr, caproate) using aryltin compounds and $T1X_3$ has been described (7).

Rearrangement and deprotonation of 2,6-bis(2-methyl-2-benzothiazolinyl)pyridine occurred upon reaction with $RTI(OAC)_2$ (R= Me, Et) to give II (8). X-ray crystallographic study of II (R= Me) showed that this complex has a highly distorted pentagonal pyramidal geometry with the methyl group occupying the axial position.

2,2 -Dipyridylamine reacted with $(C_6F_5)_3T1$ to give a dimeric compound, $[(C_6F_5)_2T1\{N(C_5H_4N)_2\}]_2$ <u>III</u>, whose X-ray study revealed the presence of a 5-coordinate thallium atom with very distorted trigonal bipyramidal geometry (9). X-ray structural determination of $[Me_2T1X]_2$ (X= OPh, OC_6H_4C1-0 , SPh) confirmed their formulation as discrete dimers (10). No apparent correlation between the C-TI-C angle (less than 17° deviation from 180°) and the ${}^{1}J_{TI-C}$ or ${}^{2}J_{TI-H}$ coupling constants in these dimethylthallium derivatives was found.

 205 T1, 13 C and 1 H NMR spectra were measured for McT1(OAc)₂ and McT1(CN)OAc, permitting comparison of NMR parameters in the series, McT1X₂, Me₂T1X and Me₃T1 (11). 13 C NMR spectra of some oxythallated adducts of norbornene, norbornadiene and norborn-2-ene-5-endo carboxylic acid have been obtained and assigned (12). The substituent induced shifts (α , β , γ effects) at various carbons have been calculated and compared with those for the analogous mercury(II) compounds. A dihedral angle dependence of $^{3}J_{T1-C}$ coupling constants was demonstrated.

2. Thallium-metal Bonded Compounds

Reaction of $L_2(CO)$ IrX with T1(OOCR)₃ afforded Ir-T1 bonded complexes, $L_2(CO)X(OOCR)$ Ir-T1(OOCR)₂ (L= PPh₃, PPhMe₂, AsPh₃; X= C1, GOCR; R= Me, Et, ⁱPr, CF₃) (13). The proposed structure (on the basis of ³¹P NMR and IR spectroscopy) is shown in <u>IV</u>. The Ir-T1 bond in these complexes was stable to H₂O,

HC1, RC00H, NH₃ and NEt₃. A catalytic reduction of T1(00CR)₃ to T100CR and CO₂ occurred in the presence of $L_2(CO)Rh(OOCR)$. In connection with the inhibitory effect of T1(I) ion on hydrogen uptake by $[Co(CN)_5]^{3-}$, the presence of a Co-T1-Co bonded complex, $[\{(CN)_5Co\}_2T1]^{5-}$ was detected by a rapid-scan spectroscopic method (14). Attempts also were made to prepare this complex as an isolable solid.

3. Reactions and Kinetics

Reaction of the quinone \underline{V} (R= 5-^tBu, 6-^tBu) with Et₃M (M= A1, Ga, In, T1) proceeded by a one-electron transfer mechanism via a paramagnetic chelate intermediate <u>VI</u> (15). Thus, treating \underline{V} (R= 5-^tBu) with Et₃M (M= T1, A1) gave,

after hydrolysis, 86 % of a mixture of 2,4,6-(^tBu)₂(EtO)C₆H₂OH and 2,3,5-EtO-(^tBu)₂C₆H₂OH. Similarly, reaction of \underline{V} (R= 6-^tBu) with Et₃T1 gave 2,3,6-EtC-(^tBu)₂C₆H₂OH. Tris(tetrachlorophenyl)thallium has been used to prepare a

References p. 232

series of π -allylpalladium(II) and platinum(II) complexes, M(π -allyl)(C₆HCl₄)L (M= Pd, Pt; L= PPh₃, SbPh₃), model intermediates for allylic coupling by means of transition-metal complexes (16, 17).

224

$$(C_{6}HC1_{4})_{3}T1 + (C_{6}HC1_{4})_{2}T1C1 + (C_{6}HC1_{4})_{2}T1C1$$

The kinetics of the decomposition of MeTl(OAc), in pyridine or methanol containing equimolar amounts of pyridine have been studied (18). In methanol more than 90 % of N-methylpyridinium acetate and less than 10 % of methyl acetate were obtained. A bimolecular mechanism involving an S_N^2 attack of pyridine and OAc at the methyl group of the MeTIOAc + intermediate was suggested. Nadon and Zador studied the effect of coordination around the thallium atom on the rate of decomposition of PhCH(OMe)CH_TIX, in aqueous methanol (19). low C1⁻ concentration, the rate of oxidative decomposition decreased because of the formation of PhCH(OMe)CH₂T1C1⁺ and PhCH(OMe)CH₂T1C1(OH). At high Cl concentration, PhCH(OMe)CH2TIC12 or PhCH(OMe)CH2TIC13- are formed, and deoxythallation was observed. The determination of polar, steric and resonance effects in the oxidation of 32 different olefins by $Tl_2(SO_4)_3$ in water was carried out using the linear free energy relationship for the chosen set of RCH=CH₂, RR'C=CH₂ and internal olefins (20). Polar effects were the most important for the RCH=CH₂ and RR'C=CH₂ series, while both steric and resonance effects were important for the internal olefins. An aqueous medium was advantageous for the preparation of the carbonyl compounds from olefins with electron-releasing substituents.

4. Organic Synthesis with Thallium(III) and Thallium(I) Compounds

Oxidation of several mono- and diolefins with $TI(OOCCF_3)_3$ was investigated (21). Transformations examined include:

When cyclohexa-1,3-diene is coordinated to iron, oxidation with $T1(OOCCF_3)_3$, $T1(NO_3)_3$ or $T1(OAc)_3$ in methanol proceeds as shown below to give <u>VII</u> and <u>VIII</u> (22).

Cyclooctadiene reacted with T1(00CCF₃)₃ in CH_2Cl_2 to give transannular cyclization products, IX and X (23). A general method for regioselective

ring expansion of cyclic aralkyl ketones by means of the Wittig reagents and $T1(NO_3)_3$ was described (24).

226 CHR R[®]CHPPh₇ $T1(NO_{7})$ (СН., R (CH) MeOH

R = H, MeO; R = H, Me, Et; n = 2, 3, 4

Particularly notable examples include:

2-Methylenenorbornane and $T1(NO_3)_3$ in methanol gave a ketone which further reacted with $T1(NO_3)_3$ to result in a stereospecific ring contraction (25).

Dimethylketals of chalcones reacted with $T1(NO_3)_3$ in trimethyl orthoformate (TMOF) to afford <u>XI</u>, provided that the migratory aptitude of Ar' is moderate to good (26).

Oxidative rearrangement of ent-17-norkauran-16-one <u>XII</u> with T1(NO₃)₃ in acetic acid gave <u>XIII</u> as the major product, together with <u>XIV~XVI</u> (27).

Formation of these compounds formally corresponds to a new type of rearrangement shown below.

The same authors also reported oxidation of ent-kaurenes or 13β -kaurenes with $T1(NO_3)_3$ in 1,2-dimethoxyethane where the primary products were derived by replacement of the allylic hydrogens in the parent olefins by OH or ONO_2 (28). In a comparative study of the oxidation of <u>XVII</u> with Hg(II), T1(III) and Pb(IV) acetates, the methyl ethers of the allylic alcohols were the major products from the thallium oxidation (29). Among several steroidal 5-enes which were allowed to react with T1(OAc)₃, <u>XVIII</u> gave, as the major product, <u>XIX</u> which may have been formed through a Westphalen-type rearrangement of the organothallium intermediate, <u>XX</u>, involving migration of the 10-methyl group, followed by internal nucleophilic attack of the 3α -hydroxyl group (30).

In connection with the intermediacy of enol ethers in the oxidation of propiophenone with $T1(NO_3)_3$ in TMOF [J. Am. Chem. Soc., 98 (1976) 3037], Walker and Pillai examined the reaction of α -methoxystyrene derivatives with T1(III)

salts to find selective formation of 2-aryl alkanoates even in the absence of TMOF or a solid support (31). Further, this transformation can be carried out under aqueous conditions or less acidic conditions.

228

Oxidation of the enamine \underline{XXI} with T1(OAc)₃ in methanol gave a diastereomeric mixture of α,β -dimethoxy derivatives (32). In another reaction of enamines,

Back et. al obtained a ring-expanded product from XXII as shown below (33).

Addition of aromatic amines to phenylacetylene was catalyzed by $T1(OAc)_3$ in which intermediate formation of organothallium compound was postulated (34).

Treatment of triaxane with $TI(OAc)_3$ in acetic acid gave XXIII, providing a simple, stereospecific route to a C-4, C-8 difunctionalized brendane (35).

Simple synthesis of aromatic fluorides by means of Tl(OOCCF₃)₃ was described (36). The method is limited to aromatic substrates which contain neither powerful electron-withdrawing groups nor oxygen or amino substituents.

ArH
$$\xrightarrow{\text{T1}(00CCF_3)_3}$$
 ArT1(00CCF_3)₂ $\xrightarrow{\text{KF}}$ ArF
Ar= 4-MeC₆H₄, 4-EtC₆H₄, 2,4-Me₂C₆H₃, 2,5-Me₂C₆H₃, 2,4,6-Me₃C₆H₂, 4-PhC₆H₄

Thallation of 2,3,5,6-tetrafluorcanisole, <u>XXIV</u>, was examined (37). Thus, while <u>XXIV</u> was not thallated by T1(OOCCF₃)₃ in CF₃COOH, the same reaction mixture containing CF₃SO₃H gave, after treatment with NaI, 39 % p-IC₆F₄OMe. T1(O₃SCF₃)₃, however, did not give as good results as the above system due to solubility problems.

The reaction of <u>p</u>-alkylphenols with $Tl(ClO_4)_3$ in aqueous perchloric acid afforded 65-70 % of alkyl-substituted <u>p</u>-benzoquinones via acid catalyzed dienone-phenol rearrangement (38).

A major product from oxidation of estrone with $Tl(ClO_4)_3$ was found to be <u>XXV</u>, a possible route to which is shown below (39).

References p. 232

Intramolecular coupling of phenolic diarylalkanes using $T1(OOCCF_3)_3$ has previously been reported [J. Am. Ciem. Soc., 95 (1973) 612; 97 (1975) 1239; 98 (1976) 2571]. Schwartz and co-workers now compared such coupling of diphenolic, monophenolic and non-phenolic substrates using $T1(OOCCF_3)_3$, $VOCl_3$ and $Ag(COCCF_3)_2$ (40), and found that $T1(OOCCF_3)_3$ is suited for monophenolic coupling, e.g.

230

These authors suggested an O-thallated intermediate, in contrast to ringthallated intermediates in the oxidation of phenols by T1(III) compounds [J. Org. Chem., 41 (1976) 282]. Oxidative coupling of aromatic compounds using T1(OOCCF₃)₃ in CF₃COOH, carbon tetrachloride or CH₃CN was described (41).

Aromatics which contain powerful electron-withdrawing groups (COOR, CN, NO_2) failed to couple. The same authors also described similar coupling of <u>XXVI</u> (Z= 0) and <u>XXVII</u> (42). Treatment of <u>XXVII</u> with Tl(OAc)₃, however, led to aromatic acetoxylation to give <u>XXVIII</u> (R'= OAc).

Several thallium compounds including C_5H_5T1 , 2,4-dimethylphenylthallium compounds and oxythallated adducts of \underline{o} -allylphenol, styrene and norbornadiene were found to be effective catalysts for the transesterification of alkyl esters of di-, tri- and tetracarboxylic acids such as methyl terephthalate, phthalate or isophthalate with 2,3-epoxypropanol (43). Treatment of phenylcyclopropane with TIOAc/I₂ gave, as the major products, 1,3-disubstituted phenylpropanes, possibly via electrophilic attack of iodine at the ring (44).

The same authors extended their previous reaction of olefins with $T10Ac/I_2$ to T10Ac/IC1, e.g. as shown below (45).

5. Organothallium(I) Compounds

Pyrolysis at 200-300 °C of $Tl_2R^1R^2C_2B_9H_9$ (R¹, R²= H, Me) gave thallium metal and $TlR^1R^2C_2B_9H_{10}$ as the major product (46). The structure of the thallacarboranes thus prepared was discussed on the basis of mass and ¹H and ¹¹B NMR spectra. Reaction of C_5H_5Tl with tetracyanoethylene proceeded almost quantitatively to give <u>XXIX</u> (47). A low temperature X-ray investigation

$$C_5H_5T1 + (CN)_2C = C(CN)_2 \longrightarrow T1[C_5H_4C(CN) = C(CN)_2] + HCN$$

XXIX

confirmed the structure of <u>XXIX</u> to be similar to that of C_5H_5T1 . <u>XXIX</u> was found to be useful for making tricyanovinyl-substituted metallocenes, <u>e.g.</u>

$$\underbrace{\text{XXIX}}_{\text{m}=\text{Mn}(\text{CO})_{5}, \text{m}'=\text{Mn}(\text{CO})_{3}; \text{m}=\text{m}'=\text{CuPPh}_{3}; \text{m}=\text{Fe}(C_{5}H_{5})(\text{CO})_{2}, \text{m}'=\text{Fe}(C_{5}H_{5})$$

In the presence of additional C_5H_5T1 , $Fe(C_5H_5)[C_5H_4C(CN)=C(CN)_2]$ gave a dinuclear complex.

Reaction of C_5H_5TI with 7-norbornadienyl chloride in diglyme at 150°C is reported to constitute a convenient one-step synthesis of <u>XXX</u> (48).

References

232

- 1. H. Schmidbaur and H. -J. Fuller, Chem. Ber., 110 (1977) 3528.
- R. Uson, A. Laguna, J. Vicente and J. A. Abad, J. Organometal. Chem., 131 (1977) C5.
- 3. P. Royo and R. Serrano, J. Organometal. Chem., 136 (1977) 309.
- 4. G. C. Stocco, Inorg. Chim. Acta, 24 (1977) L65.
- 5. P. Krommes and J. Lorberth, J. Organometal. Chem., 131 (1977) 415.
- 6. B. Walther and S. Bauer, J. Organometal. Chem., 142 (1977) 177.
- P. Syutkina, E. M. Panov, L. A. Lipatova and K. A. Kocheshkov, Zh. Obshch. Khim., 47 (1977) 1551; Chem. Abstr., 87 (1977) 135525.
- K. Henrick, R. W. Matthews and P. A. Tasker, Inorg. Chim. Acta, 25 (1977) L31.
- 9. G. B. Deacon, S. J. Faulks, B. M. Gatehouse and A. J. Jozsa, Inorg. Chim. Acta, 21 (1977) L1.
- 10. P. J. Burke, L. A. Gray, P. J. C. Hayward, R. W. Matthews, M. McPartlin and D. G. Gillies, J. Organometal. Chem., 136 (1977) C7.
- 11. C. S. Hoad, R. W. Matthews, M. M. Thakur and D. G. Gillies, J. Organometal. Chem., 124 (1977) C31.
- P. F. Barron, D. Doddrell and W. Kitching, J. Organometal. Chem., 132 (1977) 351.
- 13. P. I. van Vliet and K. Vrieze, J. Organometal. Chem., 139 (1977) 337.
- 14. Y. Hisamatsu and M. Iguchi, Chem. Letters, (1977) 217.
- G. A. Razuvaev, G. A. Abakumov, E. S. Klimov, E. N. Gladyshev and P. Ya. Bayushkin, Izv. Akad. Nauk SSSR, Ser. Khim., (1977) 1128; Chem. Abstr., 87 (1977) 68446.

16. S. Numata and H. Kurosawa, J. Organometal. Chem., 131 (1977) 301.

- 17. S. Numata, R. Okawara and H. Kurosawa, Inorg. Chem., 16 (1977) 1737.
- 18. U. Pohl and F. Huber, J. Organometal. Chem., 135 (1977) 301.
- 19. L. Nadon and M. Zador, Can. J. Chem., 55 (1977) 3590.
- 20. M. Strasak and M. Hrusovsky, J. Org. Chem., 42 (1977) 685.
- 21. G. Emmer and E. Zbiral, Tetrahedron, 33 (1977) 1415.
- 22. B. F. G. Johnson, J. Lewis and D. G. Parker, J. Organometal. Chem., 127 (1977) C37.
- 23. Y. Yamada, A. Shibata, K. Iguchi and H. Sanjoh, Tetrahedron Lett., (1977) 2407.
- 24. E. C. Taylor, C. -S. Chiang and A. McKillop, Tetrahedron Lett., (1977) 1827.
- 25. A. J. Irwin and J. B. Jones, J. Org. Chem., 42 (1977) 2176.
- 26. E. C. Taylor, R. A. Conley, D. K. Johnson and A. McKillop, J. Org. Chem., 42 (1977) 4167.
- 27. E. Fujita and M. Ochiai, J. Chem. Soc. Perkin I, (1977) 1182.
- 28. E. Fujita and M. Ochiai, J. Chem. Soc. Perkin I, (1977) 1948.
- 29. G. Ortar and I. Torrini, Tetrahedron, 33 (1977) 859.
- 30. A. Schwartz and E. Glotter, J. Chem. Soc. Perkin I, (1977) 2470.
- 51. J. A. Walker and M. D. Pillai, Tetrahedron Lett., (1977) 3707.
- 32. M. P. Paradisi and G. P. Zecchini, Tetrahedron, 33 (1977) 1732.
- 33. T. G. Back, O. E. Edwards and G. A. MacAlpine, Tetrahedron Lett., (1977) 2651.
- 34. J. Barluenga and F. Aznar, Synthesis, (1977) 195.
- 35. D. F. Covey and A. Nickon, J. Org. Chem., 42 (1977) 794.
- 36. E. C. Taylor, E. C. Bigham, D. K. Johnson and A. McKillop, J. Org. Chem., 42 (1977) 362.
- 37. G. B. Deacon and D. Tunaley, J. Fluorine Chem., 10 (1977) 177.
- 38. Y. Yamada and K. Hosaka, Synthesis, (1977) 53.
- 39. Y. Yamada, K. Hosaka, T. Sawahata, Y. Watanabe and K. Iguchi, Tetrahedron Lett., (1977) 2675.
- M. A. Schwartz, B. F. Rose, R. A. Holton, S. W. Scott and B. Vishnuvajjala, J. Am. Chem. Soc., 99 (1977) 2571.
- 41. A. McKillop, A. G. Turrell and E. C. Taylor, J. Org. Chem., 42 (1977) 764.
- 42. E. C. Taylor, J. G. Andrade and A. McKillop, Chem. Comm., (1977) 538.
- 43. H. Zondler, D. Trachsler and F. Lohse, Helv. Chim. Acta, 60 (1977) 1845.
- 44. P. H. Atkinson, R. C. Cambie, G. Dixon, W. I. Noall, P. S. Rutledge and P. D. Woodgate, J. Chem. Soc. Perkin I, (1977) 230.
- 45. R. C. Cambie, W. I. Noall, G. J. Potter, P. S. Rutledge and P. D. Woodgate, J. Chem. Soc. Perkin I, (1977) 226.
- 46. J. Smith, G. Allender and H. D. Smith, Jr., Inorg. Chem., 16 (1977) 1814.
- 47. M. B. Freeman, L. G. Sneddon and J. C. Huffman, J. Am. Chem.Soc ., 99 (1977) 5194.
- 48. M. A. Battiste and J. F. Timberlake, J. Org. Chem., 42 (1977) 176.